

Handbook

A user’s guide to SMBX2 b4

2

Introduction

Installation
Add_leveltest_assoc.bat

Editor
Important buttons and options
Setting Up Your Level Folder
Using the Tileset Itembox
Unsupported Features

BGO Settings
Sections

Testing
The Testing Menu
The Console
Performance Debugging
Red Warnings
Encountering Bugs

New Features
The _templates Folder

ach-n.ini
Dummy.png
background2-n.ini, background2-n.txt
background-n.ini, background-n.txt
Block-n.lua, block-n.ini
block-n.txt
npc-n.lua, npc-n.ini
npc-n.txt
example.lua
particles_example.ini, ribbon_example.ini
music.ini
standard.vert, standard.frag

Parallaxing Backgrounds
TXT Files for Blocks
TXT Files for Background Objects
TXT Files for Effects
NPC Codes
The 751-1000 Range
[block/npc]-n.lua Files, Packs and Duplication
Player Offsets
Launcher Pages

3

Achievements
Level Settings

Mario Challenge
Level Timer

Section Settings
Darkness
Effects
Beat Timer

LunaLua
Automatically accessible features

Added functionality to basegame classes
Advanced Sprite Drawing
Collision detection
Colors
Liquid Class
Save Data
Sound and Music
Vector Math
Achievements

Easy-Access Features
Autoscrolling
Camera Zones
Clear pipes
Lineguides
Orbits
Switch Colors
Timer

Advanced Libraries
Actorclass - Easily Controllable Actors for Cutscenes
Animatx2 - Extended spritesheet animations
Click - Mouse Input
Routine - Coroutines
Handycam - Advanced Camera Control
Particles - Particle Effects and Ribbon Trails
Darkness - Darkness and Lighting
Textplus - Advanced Dialogue Framework

Shader Programming

Edge Cases and Keeping Compatibility
Interactions Between Certain New NPCs

https://docs.google.com/document/d/1sIDedvTZ6nzi0M4q7-YqhGPb-0m6OiriU3HYGOKWkc8/edit?ts=5e1a65d1#heading=h.dt42t0dy7p5s

4

Introduction
SMBX2 (2.0.0 b4, henceforth referred to as SMBX2 b4) is the latest stable build of SMBX2,
as of January 2020. It is a direct update to the last preview build 2.0.0 b4 p2 (a.k.a. SMBX2
PAL), and fixes many of the issues present in that version. ​As such, it is stable for use
creating episodes as well as levels.

Please refer to the ​Encountering Bugs​ segment below for how to proceed if you encounter
anything out of the ordinary.

Installation
If you haven’t already, start by downloading the program from ​here​.
The installer is directly created from a ZIP archive of our repository and will deploy the
project into the directory you specify. The package will be installed to
“$TARGETDIR/SMBX2”, but you’re free to change the name of the folder afterwards.

Add_leveltest_assoc.bat
The script of this name in the data folder can be used in order to enable you to open lvl and
lvlx files by double-clicking them, without the need to go through the editor.

http://codehaus.wohlsoft.ru/downloads.html

5

Editor
The Editor can sometimes be a tricky UI to navigate. If you know where to look, however,
you will be able to find what you need fairly quickly. Below are some pointers to the most
important features of the editor.

Important buttons and options
The following options in the editor are among the most commonly used ones. You can learn
about the functions of the buttons that are not listed by hovering over them for a second.

The button with this icon opens the Tileset Itembox, the main method of adding objects to a
level. Its functionality is further explained in a later segment.

Before you can test your level, you need to place a start point for the first player. Green
Mario’s start point is optional.

These buttons are used to draw zones of water and quicksand respectively. These zones
can be moved and resized after placement, too.

Opens the “Warps and Doors” window, in which warps can be configured. There are various
unsupported features in this window, all of which are further detailed in the “Unsupported
Features” segment below.

Opens the “Section Settings” window, in which various section-specific properties can be
configured. Unsupported features of this window are listed in the “unsupported Features”
segment.

Open the “Layers” and “Events” windows respectively. Together, these can be used to
create moving layers and toggle layer visibility. Events can further be used to play sound
effects, lock player input, manipulate the section and even execute lua code (using
LunaLua’s onEvent event).

6

The section buttons transport you to the specified section instantly.

Warning!​ Although there is a button to the right for adding sections beyond Section
20, such extended sections are not currently supported by SMBX2. Further
unsupported editor features can be found in the “Unsupported Features” segment
below.

Enabling a lock will prevent any of the tiles of that type to be interacted with. From left to
right, the locks are: Blocks, Background Objects, NPCs, Warps, Liquids.

“Snap to grid” and manipulation of grid size can be used for more granular placement of
elements such as blocks and background objects. “Default by item” describes the default
grid alginment option.

If you are starting to notice that the editor is lagging, disabling the animation with a click of
this button should help!

7

Opens (and, if necessary, creates) a lunalua script in the level folder of the currently active
level.

Changes the editor’s language. Translations may not always be perfectly accurate, but if
English doesn’t do the job for you, hopefully you will be able to find your way around more
easily with a different language!

Setting Up Your Level Folder
In order to use custom assets in your level, you best adhere to the recommended folder
structure. The following figure displays what is often referred to as the “Episode Folder”
(since, if this level were part of an episode, it would be the directory in which every level
would be located).

Make sure you’re using lvlx files rather than the old lvl file format. The old format
doesn’t support various new features, like per-npc behaviour settings for certain
NPCs.

Above the .lvlx file is a folder using the same name as the level file. This folder is what’s
called a “Level Folder”. In it you can place custom assets which will be applied locally to the
level:

8

From lua scripts, to custom graphics, to music - any custom asset for the level should be
placed in here to make it obvious which level what assets belong to.

If you are already testing your level in the editor and are making changes to the
custom graphics in the level folder while editing, you need to press the ​F8​ key in
order to refresh the contents of the level folder, in order to get them to display
properly in the editor.

Using the Tileset Itembox
The Tileset Itembox is the main container for all elements accessible in SMBX2.

By switching between the different tabs, you are able to navigate to the items you want to
place in your level.

Warning!​ We are still looking into hiding the “Map” tab unless a world map is being
worked on. Please ignore that tab.

9

Even though quick access to all features is nice, there is still a lot of clicking involved in order
to get to the items you want to access. This is where the “Custom” tab is helpful.

With a press of this button, you will be brought into a Tileset Editor, in which you can create
your own tilesets of any kind.
The editor features a search bar, with which you can search by an item’s name, as well as
its ID. You can also filter tiles in order to only show sprites with custom assets, or sprites
without. After giving the tileset a name and hitting “Save”, it will be saved into the level folder
and the tileset will automatically be displayed as part of the “Custom” tab in the Tileset
Itembox.

10

Certain features have been specifically removed from the Tileset Itembox for this
build. This is because these NPCs, Blocks, BGOs, etc. are unfinished and likely to
behave unexpectedly, or cause crashes or errors. If an NPC you are looking for is
not in the Tileset Itembox, please avoid using it in your levels, as it is very likely to
behave differently in future releases.

Unsupported Features
Since the Editor is not exclusively used by SMBX2 but also by its own engine (currently in
alpha), there are various features present in that engine which aren’t implemented in
SMBX2. While most of these are hidden, the sections below highlight the remaining
unsupported areas, all highlighted in ​red​.

BGO Settings

Sections
Adding sections beyond Section 20 is unsupported.

11

Testing
With a press of the ​F5​ key, a SMBX window will open that allows you to test your creation.
You can tab out of the Test Window at any time to make changes to your level in the
background. Another press of the ​F5​ key then refreshes the Test Window with these new
changes.

The Testing Menu

The Testing Menu has been massively upgraded since its Beta 3 incarnation. Its features
include the following:

● Setting the amount of players to test with
● Start position for testing. Available options:

○ Level start point
○ Any checkpoint
○ Any warp exit

● Colorblind filters. Available options:
○ Protanopia
○ Protanomaly
○ Deuteranopia
○ Deuteranomaly
○ Tritanopia
○ Tritanomaly
○ Achromatopsia
○ Achromatomaly

● Selecting the character for each player, including all new characters. You can also:
○ Set their powerup
○ Set their mount

12

The Console
A press of the ​TAB​ key during gameplay brings up the developer console.

The console can be used to execute lines of lua code. This is particularly useful when
working with permanent storage using SaveData. The SaveData library will be further
discussed in the LunaLua segment of the handbook.

13

Performance Debugging
If you are noticing poor performance in your level, you can investigate it by pressing ​F3
during gameplay, which brings up the profiler.

Profiling lasts until ​F3​ is pressed again. The second press opens a dialog window with the
results:

Results are ordered by impact on performance. Individual entries detail the line numbers,
allowing you to track down the lines of code that contribute to your level running poorly.

14

Many basegame-related libraries are not easy to understand, and if you run into
performance issues with basegame libraries, we recommend talking to us directly on the
codehaus discord server.
https://discord.gg/aCZqadJ

Red Warnings
While playing levels that make use of various libraries for SMBX2b3 (2.0.0 Beta 3) in this
build, you might encounter briefly visible red text near the top of the screen when starting a
level. This message and the corresponding dialog box are only visible in the editor and warn
of deprecated libraries that the level’s lua code uses, or other non-vital errors. The libraries
in question are slated for removal in a future version of SMBX2, one version after a
replacement has been provided. By updating early, you can make sure your levels retain
compatibility across a leap between versions.
If you want to continue using deprecated libraries for niche reasons, make sure to make a
local copy inside your level or episode folder for it, so that the removal from basegame in a
future version doesn’t affect your work in the long run.

Encountering Bugs
If you encounter unexpected behaviour or blatant crashes, please use the bug-shaped icon
on the launcher to submit a bug report.

https://discord.gg/aCZqadJ

15

New Features

The _templates Folder
A lot of features in this section make use of specific files and need those to be formatted in a
certain way in order to function. We have included a folder called “_templates”, which
includes various dummy files for different purposes. Here is how you can use them:

ach-n.ini
Template for an achievement definition. When put into an episode’s “achievements” folder,
this will show up as one of the achievements on the launcher. More info on achievements
can be found further down in the document.

Dummy.png
A generic image file referred to in multiple other configuration files in the dummy folder. Only
needs to be copied for testing before the image is replaced.

background2-n.ini, background2-n.txt
A template for parallaxing backgrounds, discussed in the section below. Copy it and
Dummy.png to your level folder and rename the “n” in the file to the number of the
background you want to replace, then make changes to the file until you get the desired
result! Your should, however, delete all the fields you aren’t using, since some will override
others and give unexpected results!

background-n.ini, background-n.txt
A template for new BGOs in the 751-1000 range detailed below. Take a look in the files after
copying them over to your level folder to see different customization options. The “ini” file
determines the editor appearance, while the “txt” file has effects on the game while it’s
played. Rename the “n” in the files to the ID you wish to occupy and make sure the BGO has
an image file associated with it (for example background-751.png).

Block-n.lua, block-n.ini
A template for new Blocks in the 751-1000 range detailed below. Rename the “n” in the file
to the number of the Block ID you want to occupy and make sure the Block has a
corresponding image file associated with it. The example block-n.lua will simply destroy the
block as a check to see if everything works. The “ini” file determines the editor appearance,
while the “lua” file has effects on the game while it’s played.

block-n.txt
A template for a Block config file for existing Blocks. Includes defaults for all configurable
options. Excess options can be removed.

16

npc-n.lua, npc-n.ini
A template for new NPCs in the 751-1000 range detailed below. Rename the “n” in the file to
the number of the NPC ID you want to occupy and make sure the NPC has a corresponding
image file associated with it. The example npc-n.lua will simply jump up and down in place,
as a check to see if everything works. The “ini” file determines the editor appearance, while
the “lua” file has effects on the game while it’s played.

npc-n.txt
A template for a NPC config file for existing NPCs. Includes defaults for all configurable
options. Excess options can be removed.

example.lua
A template for a LunaLua library file. Contains various example functions, but doesn’t do
anything by itself. Copy the file over and load it to get started more easily with creating your
own libraries.

particles_example.ini, ribbon_example.ini
Configuration files for particle emitters and ribbon trails for the particles library discussed
further below in the handbook. Copy the files over and play around with the configuration
options to get a feel for how the systems are set up! Don’t forget to load the emitter and draw
it, too! More details in the section about particles.

music.ini
Configuration files for the global music locations. Allows you to customise music on a
per-level or per-episode basis, depending on whether the files are placed in the level or
episode folder. Simply rewrite the file paths as needed.

standard.vert, standard.frag
Example files for GLSL shaders. Shaders and the details of these files are discussed further
in the Shader Programming section of the handbook.

17

Parallaxing Backgrounds
Creating parallaxing backgrounds in levels has been streamlined to the point where no
user-written lua code is necessary for most purposes.
Parallaxing backgrounds are now automatically applied based on the file name of a
corresponding .txt (or .ini) file:

Worth noting is that the naming for the txt files follows SMBX’s ​internal​ numbering
for backgrounds, which may sometimes differ from the numbering of the .png files. If
the numbers are off in certain places, however, they’re never off by more than one.
The example above replaces the SMW Forest background. The correct numbering is
visible in the editor when selecting a section background.

The txt file can pull from other images in the folder and define the features of the
background’s individual layers, like so:

[Backdrop]

name=​"BG"

depth=​450

alignY=TOP

img=​"prlx_clouds.png"

fitY=​true

repeatX=​true

speedX=​-0.1

[Grid1]

name=​"Grid1"

depth=​150

alignY=BOTTOM

img=​"prlx_foreground.png"

repeatX=​true

repeatY=​true

18

Below is a list of parameters for each layer of the background:

img --(file name) REQUIRED: the image to draw in this layer

name --(string) A name for the layer, used by Background:Get. Defaults to "Layer#", where # is the

layer index

x, y --(numbers) layer offset from top left of boundary, defaults to 0,0

depth --(number or INFINITE) Depth at which to position the layer (0 = in line with scene,

 >0 = behind scene, <0 = in front of scene), computed from fit if not supplied

 Default of depth.INFINITE if fit is disabled

fitX, fitY --(booleans) Should the layer attempt to fit its parallaxing to the boundaries?

priority --(number) Render priority, computed from depth if not supplied

opacity --(number) How transparent this layer should be, defaults to 1

speedX, speedY --(numbers) How fast this layer should move of its own volition, defauts to 0,0

parallaxX, parallaxY --(numbers) Override for parallax scrolling speed (0 = no scrolling,

 1 = scroll with scene, >1 = scroll faster than scene)

repeatX, repeatY --(booleans or numbers) How many repeats of this image should be applied?

 0 or true = infinite repeats, 1 = no repeats, >1 = n repeats

padX, padY --(numbers) Padding to place between repeated images

marginLeft, marginRight --(numbers) Padding to the side of the layer

marginTop, marginBottom --(numbers) Padding to the top/bottom of the layer

margin --(table of numbers) A table containing all 4 margins, named

hidden --(boolean) Should this layer be hidden? Defaults to false

frames --(integer) Number of animation frames, defaults to 1

framespeed --(integer) Frame timer between animation frames, defaults to 8

alignX, alignY --(LEFT, TOP, RIGHT, BOTTOM, CENTRE) Alignment for the x and y coordinates.

 Defaults to LEFT/TOP

In addition to the per-layer properties, a “fill-color” property can be defined, which can be set
to color constants or hexadecimal colours. Further information on the color constants can be
found below.

You should define as few of these per-layer properties as you need, since some of
them will override the effects of others (such as parallaxX and parallaxY overriding
depth).

19

TXT Files for Blocks
Blocks can now be modified through TXT files, similar to how NPCs have been able to since
SMBX 1.3. The following parameters are supported:

frames --number of frames on the block sprite, defaults to 1

framespeed --Animation speed of the block. Lower=faster, defaults to 8

width, height --Determines the dimensions of a frame on the spritesheet. Automatically inferred from

 spritesheet dimensions and frame count by default.

sizable --If true, the block is a sizeable block.

semisolid --If true, the block is semisolid.

passthrough --If true, the block has no collision.

lava --If true, the block is lava.

floorslope -- Defines a floor slope collision. The value defines the direction: -1, 1.

ceilingslope -- Defines a ceiling slope collision. The value defines the direction: -1, 1.

bumpable --If true, the block is bumpable.

smashable --Enum for smashability. Values from 0 to 3 are valid.

 1: Destroyed, but blocks the smashing entity.

 2: Hit, but blocks the smashing entity.

 3: Destroyed, but does not block the smashing entity.

Darkness.lua-related:

lightradius --Radius of light

lightbrightness --Brightness of light

lightoffsetx, lightoffsety --Light offset relative to center of the sprite

lightcolor --Color constant or hex color specifying the light’s colour

lightflicker --If true, the light source flickers

TXT Files for Background Objects
Background objects can now be modified through TXT files, similar to how NPCs have been
able to since SMBX 1.3. The following parameters are supported:

frames --number of frames on the bgo sprite, defaults to 1

framespeed --Animation speed of the bgo. Lower=faster, defaults to 8

priority --render priority, defaults to -85

width, height --Determines the dimensions of a frame on the spritesheet. Automatically inferred from

 spritesheet dimensions and frame count by default

climbable --Toggles climbability, defaults to false

Darkness.lua-related:

lightradius --Radius of light

lightbrightness --Brightness of light

lightoffsetx, lightoffsety --Light offset relative to center of the sprite

lightcolor --Color constant or hex color specifying the light’s colour

lightflicker --If true, the light source flickers

20

TXT Files for Effects
The effects system currently used by new effects is exposed to the user, and it allows
customisation of effects per effect.txt-file ​for IDs above 161. ​Effect.txt files are seperated
into layers of spawned effects by a single spawner. The section below details all
configurable properties of individual effect layers:

onInit --defines the name of an onInit method defined in effectconfig.lua. Executes on spawn of this

layer

onTick --defines the name of an onTick method defined in effectconfig.lua. Executes every frame of this

 layer

onDeath --defines the name of an onDeath method defined in effectconfig.lua. Executes when the effect

 layer dies.

import --Imports an effect template from effectconfig.lua

template --can be used by a layer to use another layer as a template, reducing duplication.

img --sprite used by this layer. Defaults based on name of the effect-n.txt file, accepts number

 (for internal effect image) or path to sprite image

xOffset --horizontal offset relative to anchor

yOffset --vertical offset relative to anchor

gravity --acceleration per frame, defaults to 0

lifetime --lifetime in frames, defaults to 65

delay --number of frames of delay before which this layer should be spawned, defaults to 0

frames --frame count of used image, defaults to 1

framestyle --framestyle, akin to how NPCs use it, defaults to 0

framespeed --framespeed, defaults to 8

sound --a sound to be played when this layer spawns. Can either be a number (for internal sfx) or

 a filepath to an audio file

priority --render priority, defaults to BACKGROUND but also accepts FOREGROUND

xAlign, yAlign --LEFT,TOP,MID,RIGHT,BOTTOM, defaults to MID, determines spawner align relative to xy

 coordinate passed to it

spawnBindX, spawnBindY --defaults to LEFT,TOP, determines spawned effect alignment relative to xy

 coordinate of spawner

speedX, speedY --initial velocity of effect

maxSpeedX, maxSpeedY --speed cap of this layer. Default: no speed cap (-1)

opacity --translucency, defaults to opaque (1)

direction --facing direction, defaults to -1 and only matters in conjunction with framestyle

npcID --multipurpose field emulating vanilla effect’s npcID field, defaults to 0

angle --initial angle of effect, defaults to 0

rotation --rotation speed of effect, defaults to 0

variants --number of variants this effect has. Variants multiply with frame count to result in total

 number of frames on the spritesheet

variant --determines which subset of frames (variant) to use. Defaults to 0 (0-indexed)

The result may look something like this:

21

Recreation of the vanilla brick block effect:

[first]

onTick=TICK_ARC

gravity=​0.6

speedY=​-6

speedX=​-2

framespeed=​3

frames=​4

lifetime=​500

maxSpeedY=​10

[​2​]

template=first

speedX=​2

img=​1

[​3​]

template=first

speedY=​-9

img=​1

[​4​]

template=first

speedY=​-10

speedX=​2

sound=​4

img=​1

Recreation of the baby yoshi effect:

[​1​]

import=AI_BABYYOSHI

The AI_BABYYOSHI is defined in effectconfig.lua:

cfg​.​defaults​.​AI_BABYYOSHI​ ​=​ {

 ​framespeed ​=​ ​10​,

 ​onInit ​=​ ​"INIT_BABYYOSHI"​,

 ​onDeath ​=​ ​"DEATH_SPAWNNPCID"​,

 ​frames​=​2​,

 ​variants​=​8

}

NPC Codes
There are new additions to NPC codes in SMBX2 Beta 4. While some are globally available,
others define specific behaviour for specific NPCs.

22

All available NPC codes can be viewed in the document below. The buttons at the bottom of
the linked document can be used to navigate between different lists of NPC codes:
SMBX2 NPC Codes

The 751-1000 Range
We have added a reserved range of IDs for various objects which are reserved entirely for
people to customize on a per-level or per-episode basis. The ranges are as follows:

● Effects 751-1000
● Blocks 751-1000
● BGOs 751-1000
● NPCs 751-1000

Once used, slots in these ranges will behave just like any other item of that type.
For Blocks, BGOs and NPCs it’s important to remember that their editor appearance of the
object is defined by an ini file. Examples of such ini files can be found in the appropriate
subdirectory of “SMBX\data\PGE\configs\SMBX2-Integration\items”. You can copy any of
these as a template for your own custom object into your level or episode folder in order to
get started. Please refrain from editing the example files directly, as doing so will mess up
your installation.
After the object is set up, press ​F8​ in the editor to reload the level. Your new object can now
be found through the Tileset Itembox’s Tileset Editor.

Unused objects outside of those ranges are subject to be used by us (the
developers) in future releases, and should be left as-is for the purposes of keeping
your levels/episodes compatible.

[block/npc]-n.lua Files, Packs and Duplication
When taking a look in the “SMBX/data/scripts/npcs” and “scripts/blocks” folders, you might
notice that files are numbered like their respective graphics files are. If you copy one of those
files (take the Thwimp, NPC 301, for example) into your level folder and rename it to
npc-751.lua, your local NPC 751 will act exactly like a Thwimp would, without any additional
lua code! This modular system makes it incredibly easy for people to duplicate basegame
NPC and block behaviour, but also makes drag-and-drop NPC and Block plugin packs very
easy to create, only requiring .lua, .png and .ini files for each object that’s part of the pack!
Watch a tutorial on it here! ​[Part 1]​ ​[Part 2]

Player Offsets
Previously, in SMBX 1.3, player sprites were always anchored to the top left of a 100x100
pixel grid cell. This limitation made it difficult to work with character sprites of different
dimensions, as player sprites would frequently dip into the ground from the lack of vertical
grid space.

https://docs.google.com/spreadsheets/d/1arkr_h1r1ZABZFpc22mcbi2N8QDw3hjNsb_zA0BCKJk/edit?usp=sharing
https://youtu.be/LsT7ItnnVzY
https://youtu.be/o022ZArOaH0

23

SMBX2’s editor provides a tool that helps address this. The tool is located in
data/pge/pge_calibrator.exe and opens up this GUI:

First, load a spritesheet into the calibrator using the “open sprite” button in the lower right.
Once a player spritesheet is loaded, a cell from the sheet is displayed on the right. As you
can see here, Luigi is already positioned much more centered on the grid than Mario from
earlier. The position on the grid is something you can help visualise for yourself ​using this
overlay​. Good practice is to make sure that where you want your hitbox to be is in the same
position for every cell. It saves a lot of work later on!
The general workflow with this program is as follows:

1. Select a frame on the character matrix. This will open an overlay where you can see
all frames on the sheet. Make sure to check the checkboxes next to all sprites you

https://i.imgur.com/1dnW3g3.png
https://i.imgur.com/1dnW3g3.png

24

want to use, and select one to begin working

2. Once you have your first sprite selected, hit the “Edit” button to enable hitbox

modification for your entire spritesheet.
3. Now it’s time to configure the global defaults for width, height and height while

ducking. All units are measured in pixels. Focus for now on the character dimensions.
It helps to jump ahead to “GFX Offsets of Frame” to try and roughly align the hitbox
with the player, making sure the green rectangle covers the solid collision box you
want. Hint: It’s often a good idea to make the hitbox slightly smaller than the sprite, to
give players some leeway. Take notice of how Luigi’s arms and head are sticking out
of the green rectangle a bit.
These dimensions are uniform across the entire spritesheet, so setting them up is a
one-time manner.

4. Next up are grab offsets. Unfortunately, it isn’t possible to switch from “top” to “side”
type at the moment (it does nothing). You can also not change the offset for
characters that use “top” offsets natively (Toad, Peach). You can change the offsets
for characters based on Mario or Luigi, however. That’s how Wario’s
Wario-Land-Style grab offset was made in SMBX2!

5. This lower section includes values unique to each frame. It is where having a uniform
offset on the spritesheet really helps out. Because if your sprites are aligned well, you
are able to use the same offset values for each frame. “Is duck frame” and “right
direction” should also be checked where appropriate. Their names explain their
function pretty well. The third checkbox doesn’t affect anything. Repeat this section
for every sprite you use on the sheet.

6. Now you can save the spritesheet with the button on the lower right! This will save a
.ini file named after the spritesheet you edited. If this file is in your level or episode
directoy, SMBX2 will automatically load it for the character and powerup it’s named
after!

25

Launcher Pages
Since SMBX2 b3, custom launcher pages for your episodes have been possible to build. In
the new release, however, these have been greatly expanded.

Launcher pages generally consist of a .html file (and optionally a .css file to go with it), an
icon, and a file named “info.json”. This documentation will mostly focus on info.json, but will
touch on a few other files.

The info.json file is the core of the launcher page. It defines a lot of information about your
episode. Here is a simple example of an info.json file:

{

 "mainPage": "index.html",

 "Title": "My Super Cool Episode",

 "allowPlayerSelection": false,

 "allowTwoPlayer": false,

 "episodeIcon": "icon.png",

 "progressDisplay": "percent"

}

This sets the episode name, determines the .html file to use, disables selecting a character
from the launcher (as well as disabling 2 player mode), sets the episode icon, and sets the
progress to display as a percentage.

Here is a list of some useful fields for the info.json file:

26

mainPage

episodeIcon

title

allowedCharacters

characterNames

current-version

allowTwoPlayer

allowPlayerSelection

allowSaveSelection

starIcon

collectibles

collectible

maxProgress

progressDisplay

customProgress

noAchievementBorders

--defines the .html file to use for the launcher page

--defines the file to use for the icon (should be 64x64 for best results)

--defines the name of the episode

--a list of character IDs to allow from the launcher (only supports mario, luigi,

toad, peach, and link), e.g. [1,2] for only mario and luigi

--a list of names to use for the character selection, e.g. [“Demo”, “Iris”, “Kood”,

“Raocow”, “Sheath”]

--a list of version numbers, ranging from major to minor, e.g. [1, 0, 0]

--set to false to disable character selection for player 2

--set to false to disable character selection entirely

--set to false to disable the ability to choose a save slot (shouldn’t be commonly

used)

--set to a 16x16 image file to use it in place of the stars icon on the launcher

--set to a string that determines the name of the collectible for this episode

--an optional string to allow for a singular variant of the name of the episode

collectible

--if set to a number, this will be used instead of the total star count for

measuring progress. Progress will be measured against Progress.progress set

from Lua

--set to “percent” to display percentage progress for this episode (rather than

using x/y format)

--if set to true without maxProgress being set, will force the usage of

Progress.progress for measurement, displaying the raw value on the launcher

--set to true to disable the borders around achievement icons for this episode

When constructing your launcher .html page, you can create HTML elements with specific
classes that will be automatically populated. For example:

<div ​class​=”_episodeTitle”​></div>

This will automatically create an element that displays your episode title. Here is a list of
these automatic elements:

_episodeTitle

_episodeIcon

_stars

_starsIcon

_starsCount

_starsContainer

_credits

_creditsContainer

--displays the name of the episode

--displays the episode icon

--displays the star icon or name, and the number of stars in the episode (will not

display if no stars were found)

--displays the star icon

--displays the number of stars in the episode (will display 0 if no stars were

found)

--will not display if no stars were found in the episode

--will display credits from the .wld file (will not display if no credits were found)

--will not display if no credits were found in the .wld file

27

Achievements
Achievements are a new feature that has been added to the game! These one-time
collectables will appear in the launcher once you’ve collected them, and you can design your
own achievements for your episodes.

To create an achievement, you must create a folder named “achievements” in your episode
folder.

Inside that folder, you can then create “ach-n.ini” files, to define new achievements:

These .ini files are structured as information, followed by lists of conditions. Here is an
example .ini file:

name="My Super Rad Achievement"

desc="Do the thing!"

condition-1=true

condition-1-desc="Touch fuzzy."

condition-2=true

condition-2-desc="Get dizzy."

This section shows how to set up their data:

name

desc

collected-desc

hidden

condition-#

condition-#-desc

--defines the name of the achievement

--defines the description of the achievement

--rarely used, but defines a separate description to display when the achievement

 is unlocked

--if set to true, the achievement information will not be displayed until it is

 unlocked

--a numbered condition (e.g. condition-1). accepts a range of different values:

 ​true​ - the condition will be considered cleared when it is

 progressed - must be done from Lua

 ​“myString”​ - the condition will be considered cleared when it is

 progressed - progress will occur when the SMBX event with

 the given name is triggered

 ​#​ - any number - the condition will need to be triggered this

 number of times before it will be considered cleared - must

 be done from Lua

--a description of the numbered condition. this must be provided for the

condition

 to appear in the launcher

28

As well as ach-n.ini, you can also provide an ach-n.png. This should be a 64x64 icon for the
achievement. You can also opt to provide an ach-nl.png file (e.g. ach-1l.png), which will be
used for the icon when the achievement is still locked. Achievements will usually require
some Lua to set up, so please see below for more details.

Level Settings
In SMBX2 b4, you’ll have access to some new in-editor settings. The first set of these are for
the entire level. To find these new settings, select ​Level​ from the toolbar, and navigate down
to ​Properties​.

In the window that appears, you will see the following new settings:

Mario Challenge
The first of these new settings is the “Appear in Mario Challenge” setting. Unchecking this
box will ensure your level will never appear in the Mario Challenge level roulette. This is
useful if your level is a hub, a small bonus level, or might be impossible to complete when
thrown in from a Mario Challenge.

29

Level Timer
The second set of these are the Level Timer settings. This allows you to create a time limit
for your levels. Simply check the box, and set how many seconds the timer should last
before it runs out (and kills the player!)

Section Settings
SMBX2 b4 also adds some new functionality to level sections, which allows you to do a lot
more without touching Lua. The first new feature available is vertical wrap. Checking this in
the section settings will allow players and NPCs to fall off the bottom of the section and
reappear at the top (or vice versa).

The rest of the settings require a bit more explanation, and most can be adjusted further with
Lua.

Darkness
Sections now have settings to allow you to make them dark. Simply checking the “Dark”
checkbox in these settings will enable this feature, and relevant blocks, BGOs and NPCs will
automatically emit light. However, there are a few extra options you can tweak, as shown
here:

30

Ambient Light This determines the color of “darkness”. White means the
darkness will not be visible at all, while black means nothing
will be visible unless lit up.

Shadow Type You can choose what kind of shadows lights should cast in
this section, if any. You can choose between no shadows,
soft shadows, or hard shadows.

Falloff Type This determines how light fades into the dark as it leaves the
light source. By default this uses a realistic Inverse Square
gradient, but there are a number of other options. Feel free to
experiment.

Maximum Lights This sets the maximum number of light sources that can be
visible at any one time. You should try to keep this low if you
can.

Player Light > Enabled This enables a light source around the player.

Player Light > Color Sets the color of the light source around the player. Black
means no light at all.

Player Light > Radius Sets the radius of the light source, in pixels. A radius of 400
will stretch the light across the entire screen, for example.

Player Light > Brightness Sets the brightness of the light source. 0 means no light at all,
1 means a normal brightness, and more than 1 means a very
bright light.

Player Light > Flicker If this is checked, the light source around the player will flicker
slightly.

Effects
Sections can now have rendering effects applied to them. These come in two flavors:
weather and screen effects. These can be combined for interesting combinations.

The options for Weather are:

1. Rain​ - A moderate rainfall effect.

31

2. Snow​ - A moderate snowfall effect.
3. Fog​ - Fog that covers parts of the stage, obscuring the view.
4. Sandstorm​ - Dust and sand particles blow across the stage from right to left.
5. Cinders​ - Small sparks and flame particles drift up from below.
6. Wisps​ - Etherial lights and will-o-wisps drist in the air.

The options for Screen Effects are:
1. Wavy​ - Wobbles the screen slightly, as if in a heat haze or looking through water.
2. Lava​ - Red light, sparks, and smoke drift up from the bottom of the section.
3. Caustics​ - Effects similar to water reflecting light appear on blocks.
4. Underwater​ - A combination of ​Wavy​ and ​Caustics​, helpful for underwater sections.
5. Mist​ - White mist drifts up from the bottom of the section.
6. Sepia​ - Converts the screen to sepia tone.
7. Grayscale​ - Converts the screen to black and white (grayscale).
8. Inverted​ - Inverts the screen (light colors become dark, and vice versa).
9. Gameboy​ - Colors are limited to the gameboy palette and screen resolution reduced.
10. Dithered Gameboy​ - Colors are limited to the gameboy palette and screen

resolution reduced. Uses dithering to capture more detail.

These effects can also be accessed through Lua. See ​Added functionality to basegame
classes​ below for more information.

Beat Timer
SMBX2 b4 adds Blinking Blocks and Timed Spike Blocks. These both use a global timer call
the “beat” to synchronize their behaviour. The beat can be adjusted in the section settings,
or manually through Lua (See ​Added functionality to basegame classes​ below for more
information)..

If the beat timer is enabled, then the section settings will be used any time this section is
entered, otherwise they will be ignored.

BPM This determines the speed of the beat timer. This is measured
in Beats Per Minute, meaning the higher this number, the
faster the beat. A BPM of 60 means one beat every second.

Use Music Clock Usually, you’ll want to sync the beat to the music. If you are
doing that, you should check this box, as it ensures the beat
stays in sync even if the game lags.

32

Time Signature This determines how many beats are in a bar. The blocks
using this timer in basegame all change state after one bar,
so increasing this means increasing the time between state
changes. Try to match this with the time signature of your
music.

LunaLua

Automatically accessible features
These features can be used without the need to load any external libraries. Some are more
complicated to use than others, but all are helpful to keep in mind.

Added functionality to basegame classes
Certain basegame namespaces have been augmented with new functionality. Below is a list
of all features that have been added.

Section.getActiveIndices() ​--Returns all sections in which players currently are

Section.getWeatherEffect(id) ​--Gets a particle emitter matching one of the weather effect constants

 (WEATHER_RAIN, WEATHER_SNOW, WEATHER_FOG,

WEATHER_SANDSTORM,

 WEATHER_CINDERS, WEATHER_WISPS)

Section:drawScreenEffect(id, camera) ​--Draws a screen effect using one of the screen effect constants

 (SEFFECT_WAVY, SEFFECT_LAVA, SEFFECT_CAUSTICS,

 SEFFECT_UNDERWATER, SEFFECT_MIST, SEFFECT_SEPIA,

 SEFFECT_GRAYSCALE, SEFFECT_INVERTED, SEFFECT_GAMEBOY,

 SEFFECT_DITHERED_GAMEBOY)

Player:render{args} ​--Renders the player. The function has a lot of customisation options, documented

 here: ​https://pastebin.com/dfGz4ZDa

Player.getNearest(x,y) ​--Returns closest player [[LEVEL ONLY]]

Player:transform(id, shouldSpawnEffect?) ​--Transforms the player into the character of the ID provided,

with

 a smoke cloud effect if desired.

Player.setCostume(id, costumeName, volatile?) ​--Sets the costume for the character of the ID provided to

 the costume with the corresponding name. CostumeName

 has to match the folder name of the costume in the

 costumes folder. For example, “SMW-Mario”. If volatile is

 set to true, the costume state isn’t saved.

Player.getCostume(id) ​--Returns the name of the costume currently equipped by the character with the

 given ID

Text.getSize(string text, int fonttype) ​--Returns width, height of the string specified if rendered with

 Text.print with the corresponding font type

https://pastebin.com/dfGz4ZDa

33

Misc.episodePath() ​--Gets total path to the episode

Misc.inEditor() ​--Are we playing in the editor?

Misc.isPaused() ​--Is the game paused either by vanilla or lua?

Misc.dialog(a) ​--Shows a dialog box, displaying a. Can accept multiple arguments. Intended for debugging.

Misc.givePoints(index, position, supressSound?) ​--Provides score or lives relative to the internal score

 indexing, renders the effect at the given position and plays

 a sound if desired

Misc.setBPM(b)​ ​--Sets the level’s BPM, used for blinking blocks and timed spike blocks

Misc.getBPM()​ ​--Gets the level’s BPM, used for blinking blocks and timed spike blocks

Misc.setBeatTime(s)​ ​--Sets the time between beats, used for blinking blocks and timed spike blocks

 This also adjusts the level’s BPM

Misc.getBeatTime() ​--Gets the time between beats, used for blinking blocks and timed spike blocks

Misc.setBeatSignature(s) ​--Sets the number of beats in a bar, used for blinking blocks and timed spike blocks

Misc.getBeatSignature() ​--Gets the number of beats in a bar, used for blinking blocks and timed spike blocks

Misc.beatUsesMusicClock ​--If set to true, the beat will be counted to keep sync with the music

Misc.getBeatClock() ​--Gets the current beat tick counter, used for blinking blocks and timed spike blocks

Level.load(filename, episodename, warpindex) ​--Loads the specified level [[LEVEL ONLY]]

Level.folderPath() ​--Returns the path to the current level folder [[LEVEL ONLY]]

Layer.isPaused() ​--Check if layers are currently paused [[LEVEL ONLY]]

--Transforms an NPC. Centered defaults to true and binds to bottom/center for NPCs with gravity to prevent

clipping. changeSpawn defaults to false, and if changed will change the spawn ID of the NPC to newID

[[LEVEL ONLY]]

NPC:transform(newID, centered, changeSpawn)

Graphics.drawBox{args} ​--Helper function for glDraw which takes x,y,width,height rather than a vertex table

Graphics.drawScreen{args} ​--Helper function for glDraw which draws over the entire screen

Graphics.drawLine{args} ​--Helper function for glDraw which draws a line between x1,y1 and x2,y2

Graphics.drawCircle{args} ​--Helper function for glDraw which draws a circle with x,y and radius

table.ifindlast(t, value) ​--Finds last instance of value in t

table.findlast(t, value) ​--Works for tables with gaps in their indexing

table.ifind(t, value) ​--Finds first instance of value in t

table.find(t, value) ​--Works for tables with gaps in their indexing

table.ifindall(t, value) ​--Finds all instances of value in t

table.findall(t, value) ​--Works for tables with gaps in their indexing

34

table.icontains(t, value) ​--Returns whether t has value

table.contains(t, value) ​--Works for tables with gaps in their indexing

table.iclone(t) ​--Performs a shallow clone of t

table.clone(t) ​--Works for tables with gaps in their indexing

table.ideepclone(t) ​--Performs a deep clone. Performance-intensive!

table.deepclone(t) ​--Works for tables with gaps in their indexing

table.ishuffle(t) ​--Shuffles a table with consecutive numeric indices

table.map(t) ​--Returns a lookup map of t

table.unmap(t) ​--Reserve operation of table.map(t)

table.join(...) ​--Arguments are joined in reverse order, returns result

table.append(...) ​--Values of arguments are appended in order, returns result

table.reverse(t) ​--Reverses a table

table.flatten(t) ​--Flattens an array of vectors, matrices, colors, or similar contents, turning it to a numerically

 ordered table without subtables. Useful for uniforms and attributes in shaders, which

 require flattened arrays as their input.

string.trim(s) ​--Trims trailing and leading whitespace

string.split(s, pattern, exclude?, plain?) ​--Split a string on a pattern into a table of strings

string.compare(left, right) ​--Compares two strings by lexical ordering and length, returning -1 or 1

depending

 on whether the left or right string is lexically or literally smaller. Returns 0 when

 the strings are identical.

math.lerp(a,b,t) ​--Interpolates from a to b given time value t (between 0 and 1)

math.anglelerp(a,b,t) ​--Interpolates between 0 and 360, wrapping around the ends

math.invlerp(a,b,v) ​--Performs an inverse lerp

math.clamp(a,min,max) ​--Clamps a between the limits

math.sign(a) ​-- Returns the signum of a

35

Advanced Sprite Drawing
The Sprite namespace makes complicated draw calls easy. While for simple draw calls the
Graphics.drawImage​ family of functions will suffice, you will be unable to handle scaling,
rotation and tints without an alternative method.

The Sprite namespace has extended documentation in its source file which can be found in
“SMBX\data\scripts\base\Sprite.lua”. Its general workflow can be split into three parts
though:

1. Creating a Sprite object
2. Manipulating a Sprite object
3. Drawing the Sprite object

Here is an example:

--Creation

local​ image = Sprite{x = ​0​, y = ​0​, frames = ​10​, texture = someImage}

function​ ​onDraw​()

 image:rotate(​1​)

 image:draw{frame = ​1​}

end

Collision detection
Using functions of the Colliders namespace, collision detection can be done between Blocks,
NPCs, Players, and user-defined collider objects. You can find documentation for the library
on the following page, though it is somewhat outdated. These days, Colliders is
automatically active, and you do not need to explicitly load the library in order to use it:
http://wohlsoft.ru/pgewiki/Colliders.lua

Example:

--Creation

local​ box = Colliders.Box(-200000, -200600, 800, 600)

function​ ​onTick​()

 ​--Collision Check

 ​if not​ Colliders.collide(player, box) ​then

 Text.print(“The player has left the first screen”, 100, 100)

 ​end

end

If you find yourself needing to check collisions between lots of objects, for example, to see if
a collider is touching an NPC, you should consider using Colliders.getColliding. This will give
you a list of objects that satisfy your conditions. You can also ask for condition pairs (for
example, if you need to find which NPCs of a given ID are touching certain blocks of a
different ID), which will give you a list of colliding pairs. You can optionally supply a “filter”

https://wohlsoft.ru/pgewiki/LunaLua_global_functions#Graphics_functions
http://wohlsoft.ru/pgewiki/Colliders.lua

36

function, that will test every object in your provided list. You can use this if you need to fulfil
certain conditions such as memory locations.

Example:

--Creation

local​ box = Colliders.Box(-200000, -200600, 800, 600)

function​ ​onTick​()

 ​--Collision Check

 ​ ​local​ list = Colliders.getColliding{

 a = box,

 b = NPC.HITTABLE,

 btype = Colliders.NPC

 }

 ​for​ k,v in ​ipairs​(list) ​do

 Text.print(“Touching NPC at ”..v.x..“, ”..v.y, 100, k*20)

 ​end

end

Colors
This version of SMBX2 introduces a way to define and use colors. Using the Color
namespace you can access existing colors, define your own, perform math on these colours
and lerp between them. Predefined color constants and their corresponding hexadecimal
values can be found below:

Color.white --0xFFFFFFFF

Color.black --0x000000FF

Color.red --0xFF0000FF

Color.green --0x00FF00FF

Color.blue --0x0000FFFF

Color.alphawhite --0xFFFFFF00

Color.alphablack --0x00000000

Color.transparent --0x00000000

Color.grey --0x808080FF

Color.gray --0x808080FF

Color.cyan --0x00FFFFFF

Color.magenta --0xFF00FFFF

Color.yellow --0xFFFF00FF

Color.pink --0xFF73ABFF

Color.canary --0xFFF266FF

37

Color.purple --0xAB66ABFF

Color.orange --0xFF8C54FF

Color.teal --0x00AB99FF

Color.maroon --0x730000FF

Color.brown --0x804D00FF

Color.lightgrey --0xBFBFBFFF

Color.lightgray --0xBFBFBFFF

Color.lightblue --0x33CCFFFF

Color.lightgreen --0x80CC99FF

Color.lightbrown --0xBF9966FF

Color.lightred --0xFF8080FF

Color.darkgrey --0x404040FF

Color.darkgray --0x404040FF

Color.darkblue --0x003373FF

Color.darkgreen --0x005926FF

Color.darkbrown --0x4D4040FF

Color.darkred --0x800000FF

Usage examples:

--Adjustment of color alpha through concatenation:

local alphared = Color.red .. 0

--Definitions of a custom color
local myColor = Color(1,1,1)

local myColor = Color.fromHex(0x112233FF)

local myColor = Color.fromHexRGB(0x112233)

--While lerp lerps between RGB values

local newColor = math.lerp(Color.red, Color.blue, timer)

--lerpHSV uses the HSV values for its lerp

local newColor = Color.lerpHSV(Color.red, Color.blue, timer)

Extended documentation on the Color class can be found in
“SMBX\data\scripts\base\engine\color.lua”

Liquid Class
Liquids such as Water and (don’t ask) Quicksand are now accessible from code. While in
most situations simply checking for an entity’s “underwater” state can be enough, there are
some scenarios where knowing and manipulating the exact bounds of liquid boxes can be
useful. The class is equipped with the same functions other base object classes have:

38

Methods:

Liquid.get() ​-- returns all liquids in the level

Liquid.getIntersecting(x1, y1, x2, y2) ​-- returns all liquids in area

Liquid.count() ​-- returns number of liquids in the level

Fields:

myLiquid.idx ​-- index in Liquid array

myLiquid.isValid ​-- validity check

myLiquid.layer ​-- Layer object

myLiquid.layerName ​-- name of layer object

myLiquid.isHidden ​-- visibility flag

myLiquid.isQuicksand ​-- if true, this liquid is quicksand

myLiquid.x

myLiquid.y

myLiquid.width

myLiquid.height

myLiquid.speedX

myLiquid.speedY

Save Data
There are two exposed tables for save data storage accessible at all times:

● SaveData - Saves data across sessions
● GameData - Saves data for this session only

By writing to these tables, you can store information that persists past a level reload. This
can be used for various effects, like checking whether or not to repeat a cutscene the player
has already seen, or saving one-time collectibles. You can simply define new variables to
keep track of by storing them as part of these tables:

SaveData.hasBeatenLevel = ​false

GameData.skipCutscene = ​false

SaveData and GameData’s tables are ​global for an episode​. If you are working on
a level that is for a contest or collaboration, and the event in question doesn’t specify
its own save data handling, please handle your save data as follows in order to
avoid any conflicts:

--Initialisation of your own save data

SaveData[Level.filename()] = SaveData[Level.filename()] or {}

GameData[Level.filename()] = GameData[Level.filename()] or {}

local saveData = SaveData[Level.filename()]

local gameData = GameData[Level.filename()]

39

You can now use the saveData and gameData variables just like you would use SaveData
and GameData, with the added benefit of avoiding any possible conflicts with save data from
other levels in the collab or contest.

If you really need to, SaveData and GameData both have special functions you can use for
some extra functionality, though usually these won’t be necessary:

SaveData.flush() ​--Forceibly write your SaveData to the save file.

 Normally, this will be automatically done when the

 Game is saved

SaveData.clear() ​--Wipes everything from SaveData. Won’t be saved until

 the game is saved (or SaveData.flush() is called).

GameData.clear() ​--Wipes everything from GameData.

Sound and Music
You can use the following function to play music:

Audio.MusicChange((​number​) section, (​string​) filename or (​number​) musicID)

To stop music entirely, you can set the music to ID 0 - silence.

You can also use the Audio namespace’s functions to control music, though using
MusicChange is usually simpler:
https:--wohlsoft.ru/pgewiki/LunaLua_global_Sound_and_Music_functions
Sound effects have been streamlined. You can use the versatile SFX.play function to cover
your needs for sound effects:

--You can use the set overload:

SFX.play((​number​) internalindex ​or​ (​string​) filename, volume, loops,

delay)

--or named arguments:

SFX.play{args}

--Available arguments:
sound --REQUIRED: The sound file path

loops --The number of loops for this sound to play for. 0 to loop forever. Defaults to 1.

volume --The volume of this audio clip, between 0 and 1. Defaults to 1.

pan --The left/right panning of this audio clip, between -1 and 1. Defaults to 0.

tags --List of tags for this sound clip. Allows volume to be adjusted for every sound with a given tag.

tag --Single tag for this sound clip. Allows volume to be adjusted for every sound with a given tag.

delay --The number of ticks before the same sound can be played again. Defaults to 4.

Examples:

https://wohlsoft.ru/pgewiki/LunaLua_global_Sound_and_Music_functions

40

SFX.play(4)

SFX.play(“mySound.ogg”, 0.5)

SFX.play(37, 1, 3, 18)

SFX.play{sound=“mySound.ogg”}

In addition to SFX.play, you are able to use SFX.create, which creates a physical audio
source in the scene and is useful for area-specific sound effects like the rushing of a
waterfall.

SFX.create{args}

--Available arguments:
--x,y --REQUIRED: Position of the centre of the audio source.

--falloffRadius --REQUIRED: Distance the sound travels from the source before it is silent.

--sound --The sound file path

--falloffType --The falloff function to use. Supports FALLOFF_NONE, FALLOFF_LINEAR and

 FALLOFF_SQUARE. Can also use a custom function of the form

 'falloff(squaredFalloff, squaredDistance)'. Defaults to FALLOFF_SQUARE.

--type --Shape of the audio source (to emit at max volume). Supports SOURCE_POINT,

 SOURCE_CIRCLE, SOURCE_BOX and SOURCE_LINE. Defaults to SOURCE_POINT.

--play --Should the sound play immediately? Defaults to true.

--loops --The number of loops for this sound to play for. 0 to loop forever. Defaults to 0.

--volume --The volume of this audio source, between 0 and 1. Defaults to 1.

--parent --Object to attach the source to. Defaults to nil.

--tags --List of tags for this sound source. Allows volume to be adjusted for every sound with a

 given tag.

--tag --Single tag for this sound source. Allows volume to be adjusted for every sound with a

 given tag.

----SOURCE_CIRCLE only

--sourceRadius --REQUIRED: The radius of the audio source.

----SOURCE_BOX only

--sourceWidth/sourceHeight --REQUIRED: The dimensions of the audio source.

----SOURCE_LINE only

--sourceVector --REQUIRED: The vector describing the line. Line will span from {x,y} to

 {x,y}+sourceVector.

Vector Math
Using the vector namespace, you are able to use vector mathematics in two, three and four
dimensions. Its usage has changed minimally since Beta 3 and the library is now

41

automatically loaded into the vector namespace. ​Note! The namespace “vector” is not
capitalised, unlike the rest of the namespaces in this section!
Vector documentation

--To create an n-dimensional vector, you can use the following

constructor. Depending on the number of arguments you provide, you will

get a vector in a different dimension.

local myVector = vector(x,y,z,w)

--Examples

local myVector = vector(12, 3, 4, 8)​ --4D Vector

local myVector = vector(2, 8, 6)​ --3D Vector

local myVector = vector(3, 15)​ --2D Vector

local myVector = vector(5)​ --Shorthand for vector(5,5)

local myVector = vector()​ --Shorthand for vector(0,0)

local myVector = vector.zero2​ --Shorthand for vector(0,0)

local myVector = vector.right2 ​--Shorthand for vector(1,0)

local myVector = vector.up2 ​--Shorthand for vector(0,1)

local myVector = vector.one2 ​--Shorthand for vector(1,1)

--Some basic operators, fields, and functions exist for vectors:

myVector.length ​--Length of the vector

myVector.sqrlength ​--Squared length of the vector

local newVector = myNumber * myVector ​--Scalar multiplication

local newVector = myVector / myNumber ​--Scalar division

local newVector = myVectorA + myVectorB ​--Vector addition

local newVector = myVectorA - myVectorB ​--Vector subtraction

local newVector = myVectorA .. myVectorB ​--Dot product

local newVector = myVectorA ^ myVectorB ​--Cross product (3D only)

local newVector = myVectorA * myVectorB ​--Piecewise multiplication

local newVector = myVectorA / myVectorB ​--Piecewise division

local newVector = myVectorA % myVectorB ​--Project A onto B

local newVector = myVector:rotate(degrees) ​--2D rotation

local newVector = myVector:rotate(degrees, axis) ​--3D rotation

local newVector = myVector:normalize() ​--Set vector length to 1

local newVector = myVector:lookat(position) ​--Look towards vector

local newVector = myVector:planeproject(normal) ​--3D planar projection

local newVector = myVector:tov2() ​--Convert to 2D (3D and 4D only)

local newVector = myVector:tov3() ​--Convert to 3D (2D and 4D only)

local newVector = myVector:tov4() ​--Convert to 4D (2D and 3D only)

http://engine.wohlnet.ru/pgewiki/VectR.lua

42

--You can construct 2x2, 3x3, or 4x4 square matrices, and use them for

transformations by multiplying them with Vectors.

local myMatrix = vector.mat2(m11, m12, m21, m22)

--Examples:

local myMatrix = vector.mat2(1,2,3,4) ​--Matrix 1 3

 ​2 4

local myMatrix = vector.mat3(1,2,3,4,5,6,7,8,9) ​--Matrix 1 4 7

 ​2 5 8

 3 6 9

local myMatrix = vector.id2 ​--2D identity matrix (vector.mat2(1,0,0,1))

local myMatrix = vector.empty2 ​--Empty matrix (vector.mat2(0,0,0,0))

local myMatrix = vector.id3 ​--3D identity matrix

local myMatrix = vector.empty3 ​--Empty matrix

--Some basic operators, fields, and functions exist for matrices:

myMatrix.inverse ​--Inverse matrix (returns nil if matrix has no inverse)

myMatrix.det ​--Matrix determinant

myMatrix.trace ​--Matrix trace

myMatrix.transpose ​--Transposed matrix

local newMatrix = myNumber * myMatrix ​--Scalar multiplication

local newMatrix = myMatrix / myNumber ​--Scalar division

local newMatrix = myMatrixA + myMatrixB ​--Matrix addition

local newMatrix = myMatrixA - myMatrixB ​--Matrix subtraction

local newMatrix = myMatrixA * myMatrixB ​--Matrix multiplication

local newVector = myMatrix * myVector ​--Vector-Matrix multiplication

--You are also able to construct quaternions and use them for rotation

of 3D Vectors

local myQuat = vector.quaternion(axis, degrees)

--Some basic operators, fields, and functions exist for quaternions:

myQuat.inverse ​--Quaternion inverse

myQuat.norm ​--Quaternion norm

myQuat.sqrnorm ​--Quaternion squared norm

myQuat.euler ​--Vector of euler angles

myQuat.normalised ​--Normalised quaternion

local newQuat = myNumber * myQuat ​--Scalar multiplication

local newQuat = myQuat / myNumber ​--Scalar division

43

local newQuat = myQuatA + myQuatB ​--Quaternion addition

local newQuat = myQuatA - myQuatB ​--Quaternion subtraction

local newQuat = myQuatA * myQuatB ​--Quaternion composition

local newVector = myQuatA * myVector ​--Quaternion application

local newQuat = myQuatA .. myQuatB ​--Quaternion dot product

local newQuat = myQuat:normalize() ​--Quaternion normalization

local newQuat = myQuat:lookTo(myVector, (upVector)) ​--Quaternion look at

local newQuat = myQuatA:rotateTo(myQuatB, (speed)) ​--Quaternion rotate

local newMatrix = myQuat:tomat() ​--Convert to 3x3 rotation matrix

local newMatrix = myQuat:tomat4() ​--Convert to 4x4 rotation matrix

--There are also a few general helper functions:

vector.randomDir2()​ --Random 2D vector with length 1

vector.randomOnCircle(radius)​ --Random 2D vector on the edge of a circle

vector.randomInCircle(radius)​ --Random 2D vector inside a circle

vector.randomDir3()​ --Random 3D vector with length 1

vector.randomOnSphere(radius)​ --Random 3D vector on the edge of a sphere

vector.randomInSphere(radius)​ --Random 3D vector inside a sphere

For more information on vectors, matrices, quaternions, and the available functions for them,
please refer to the library file in scripts\base\vectr.lua directly.

Achievements
The Achievement namespace allows you to access to adjust achievements. There is not a
lot that needs to be done with this other than checking and setting conditions, so this guide
will just cover that.

To get a specific achievement, you can use the Achievement constructor:
local myAchievement = Achievements(1)

From that, you can access the list of conditions, and either check their values, or progress
them. For example:
Misc.dialog(myAchievement:getCondition(1).value)

myAchievement:progressCondition(1)

Misc.dialog(myAchievement:getCondition(1).value)

This code will first display a dialog box showing the current state of the first condition in your
achievement. It then progresses that condition, and shows the same dialog box again with
the updated condition. Here is the full documentation on these functions:

44

Achievements.get() ​-- returns all achievements in the episode

Achievement:getCondition(id) ​-- returns the given condition object (use

 Condition.value to access the state)

Achievement:progressCondition(id, delay?) ​-- progresses the condition.

 If delay is set to true,

 the achievement popup will

 not display until the next

 loading screen has finished

Achievement:setCondition(id, delay?) ​-- sets the value of the condition.

 If delay is set to true, the

 achievement popup will not

 display until the next loading

 screen has finished

Achievement:resetCondition(id) ​-- resets the condition so it must be

 progressed again

Checkpoints
The Checkpoint namespace allows you to create checkpoints from Lua, which are a little
more versatile than the editor-based ones. Note that you ​must​ create any checkpoints
outside onStart, because they have to exist right at the start of the level.

local myCheckpoint = Checkpoint{section = 0, x = -20000, y = -20000}

Checkpoint objects must contains a section, x, and y field, which determine where the player
will spawn. Other optional fields are:

powerup ​--Powers up the player to this powerup (e.g. PLAYER_BIG for

 default checkpoint behaviour)

sound​ --A sound file or ID to play when the checkpoint is collected

 (e.g. 58 for default checkpoint behaviour)

actions ​--A function that will be run when the player spawns into this

 checkpoint. The function will be run once for each player, and

 will pass the player as an argument.

Once you have a checkpoint object, it won’t appear in the level, but will exist in Lua and you
can use Lua to collect the checkpoint:

myCheckpoint:collect(player) ​--Collects the checkpoint, can optionally

 specify which player collected it.

myCheckpoint:reset()​ --Allows the checkpoint to be collected again.

45

Often, it is useful to be able to get the currently active checkpoint. There are a few general
functions that can help with things like this:

Checkpoint.getActive() ​--Gets the currently active checkpoint (nil if no

 checkpoint is active)

Checkpoint.get()​ --Gets a list of all checkpoints

Checkpoint.get(id)​ --Gets the checkpoint with a specific ID

Checkpoint.reset()​ --Resets all checkpoints

There is also a global event that exists for checkpoints, which is run whenever a checkpoint
is collected, and allows you to run code when the player hits a checkpoint:

function​ onCheckpoint​(​checkpoint, player​)

 ​ --your code here

end

Explosion Class
Another new addition to the scripting functionality is the Explosion class. You can use the
Lua event onExplosion to detect when an explosion happens, and do your own management
of it:

function​ onExplosion​(​eventobj, explosion, player​)

 ​if ​eventobj.cancelled​ then return end

 ​ --your code here

end

The eventobj argument allows you to cancel the explosion and prevent it from spawning.
The explosion argument is the explosion object itself, and the player argument is the player
that caused it.

The explosion object allows you to read and manipulate certain things about the explosion:

x​ --The x coordinate of the centre of the explosion

y​ --The y coordinate of the centre of the explosion

radius​ --The radius of the explosion

strong ​--If true, will destroy grey brick blocks

friendly ​--If true, will not harm the player who spawned it

id ​--The type of explosion this is

collider ​--A circle collider object representing the explosion hitbox

As well as onExplosion, there are a few basic functions that can help work with explosions:

46

Explosion.spawn(x, y, id, player) -​-Spawns an explosion

Explosion.get() -​-Gets a list of explosion objects (use onExplosion

 for reacting to explosions)

Explosion.register(radius, effectID, soundEffect, (optional) strong,

(optional) friendly)

-​-Registers a new explosion type (and returns its ID). Use this if you

want to use custom explosions in your episode or level. You can then use

this ID in Explosion.spawn. E.g.:

local​ myExplosion = Explosion.register(64, 13, “bang.ogg”)

Explosion.spawn(-20000, -20000, myExplosion, player)

By default, there are 5 different kinds of explosions:

ID

 0 ​--Peach bomb

 1 ​--Unused (reserved ID)

 2 ​--SMB2 bomb

 3 ​--SMB3 bomb

 4 ​--TNT explosion

 5 ​--Nitro explosion

Using these IDs in Explosion.spawn will change the kind of explosion that is spawned.

Easy-Access Features
Easy-access libraries are fully usable with just a few lines of code.

Autoscrolling

local autoscroll = ​require​(​"autoscroll"​)

Using the autoscroll library, you can create more complicated autoscrolling scenarios than
were previously possible in SMBX. While SMBX 1.3 wouldn’t allow for autoscroll past the
first section the player spawns in, this library allows you to control when autoscroll starts by
yourself:

--As soon as the first section is loaded, begin an autoscroll to the

right with a speed of 2.

function onLoadSection0()

 autoscroll.scrollRight(2)

end

47

--Further functions such as scrollUp, scrollLeft, scrollDown and

scrollTo are also available.

--ScrollTo’s coordinate specifies the bottom left corner of the

destination screen:

function onLoadSection1()

 ​--Scrolls to the specified X and Y coordinate with a speed of 1.5

 autoscroll.scrollTo(-170000, -185300, 1.5)

end

Camera Zones

local camlock = ​require​(​"camlock"​)

Using the camlock library, you can create camera zones. The library is fairly rudimentary in
its current stage and doesn’t respond flawlessly to overlapping zones, but will allow you to
control camera movement more smoothly than you otherwise could with few lines of code:
--The following function adds a camera zone with the specified bounds to the

scene. Everything else is handled internally. lerpSpeed determines the speed

at which the camera lerps into the zone once the player is inside of it.

This argument is optional and should be between 0 and 1.

camlock.addZone(x, y, width, height, lerpSpeed)

Clear pipes
Clear pipes automatically register a selection of NPCs as candidates for passing through.
You can modify these lists as follows:

local​ clearpipe = require(“​blocks/​clearpipe​”)

--Register Goomba and unregister player fireball

clearpipe.registerNPC(1)

clearpipe.unregisterNPC(13)

Lineguides

local lineguide = ​require​(​"lineguide"​)

Lineguide is already used by several NPCs in basegame, but it offers functions to register
even more NPCs to its network of rails.

--Registers the given IDs to lineguides.

lineguide.registerNpcs(ID or table of IDs)

Orbits

local orbits = ​require​(​"orbits"​)

48

Orbits allow you to create a set of NPCs moving in a circle. The library has detailed
documentation on how to use it in its own orbits.lua file.

Switch Colors

local switchcolors = ​require​(​"switchcolors"​)

Switchcolors manages configurations and signals for different colours of switches, including
custom ones!

--Registers a new switch colour. Returns an activator for it, as well as

its numeric key for further checking.

local activator, myColor = switchcolors.registerColor(string name)

--Calling activator will toggle a switch

activator()

--You can use the switchcolors.onSwitch event to catch switch toggles

function switchcolors.onSwitch(color)

 if color == myColor then

 ​--do stuff specific to your switch colour

 ​--here you can use switchcolors.switch to switch blocks of 2

specific IDs

 ​switchcolors.switch(id1, id2)

 end

end

--The same procedure is also available for palace switches

local activator, myColor = switchcolors.registerPalace(string name)

activator()

function switchcolors.onPalaceSwitch(color)

 if color == myColor then

 ​--do stuff

 end

end

Timer

local timer = ​require​(​"timer"​)

Timer adds a timer to the level. Its addition to a level also causes Green Berries to execute
their effect upon being eaten (adding 10 seconds to the timer).

--Activates the timer. Arguments default to 500 and false.

timer.activate(time, isFrames?)

49

--Sets the length of a second in frames.

timer.setSecondLength(frames)

timer.set(time, isFrames?) ​--Sets the value of the timer.

timer.add(time, isFrames?) ​--Adds time to the timer.

--Toggles timer active state if no newValue is specified. Else sets it.

timer.toggle(newValue)

Advanced Libraries
Advanced libraries provide extra features but often require more complicated setup and a
deeper understanding of lunalua.

Actorclass - Easily Controllable Actors for Cutscenes
Actorclass provides full-fledged controllable actors for complex characters. It relies on
animatx2.
The actorclass.lua file includes a detailed documentation of the features of individual actors.

Animatx2 - Extended spritesheet animations
Animatx2 simplifies complex animation scripting by taking care of the complicated math,
leaving only the creation of animation objects and their states as required things by the user.
The animatx2.lua file includes a detailed documentation of the library’s features.

Click - Mouse Input

local click = ​require​(​"click"​)

Click allows you to use a cursor in your level and use clicks and mouse movement for
user-defined interactions.

--Initialises all cursors. Each cursor definition is a table formatted

as such: {table of images, xOffset, yOffset, framespeed}. You can leave

the argument table empty in order to rely on default configurations.

click.loadCursor{table of cursor definitions}

--Stores current click state. Can be KEYS_PRESSED, KEYS_DOWN,

KEYS_RELEASED or KEYS_UP

click.state

--Stores speed

click.speedX

click.speedY

--Sets which cursor to display

50

click.setCursorID(id)

For further functionality, refer to the click.lua lua file.

Routine - Coroutines
The Routine namespace serves as a wrapper for coroutines in lunalua. It provides ways to
run functions as coroutines. It does not require loading to use. This works much the same
way as the older eventu.lua, and most of the behaviours are unchanged. However, there are
a few small differences and new things since the PAL version (aside from not needing to
load a library):

--Routine.run now lets you assign routines directly to variables.

local myRoutine = Routine.run(myFunc, args)

--Routine.wait allows you to provide a number of seconds to wait for.

Routine.wait(seconds, runWhilePaused?)

--Routine.skip allows you to skip to the next frame.

Routine.skip(runWhilePaused?)

--Routine.loop can be used inside routines to run code while waiting.

--This will wait for “frames”, and run myFunc every tick while waiting.

Routine.loop(frames, myFunc, runWhilePaused?)

--Functions like abort can be called directly from the routine object.

myRoutine:abort()

--The pause and resume functions can pause timed waits, and will always

--prevent a routine from continuing, even if the wait condition is met.

myRoutine:pause()

myRoutine:resume()

--A few fields can be used to check the state of the routine.

---isValid: false if the routine has ended

---paused: true if the routine has been paused with myRoutine:pause()

---yielded: true if the routine was yielded with Routine.yield()

---waiting: true if the routine is currently waiting for anything

myRoutine.isValid

myRoutine.paused

myRoutine.yielded

myRoutine.waiting

--Routine.yield gives you manual control over when to resume a routine.

Routine.yield()

51

--myRoutine:continue resumes a yielded routine.

myRoutine:continue()

Handycam - Advanced Camera Control

local handycam = ​require​(​"handycam"​)

Handycam makes it easy to perform complex operations on SMBX’s cameras.

--Cameras are accessed through handycam[idx]

handycam[1]

--Available fields:
x,y

xOffset, yOffset

width, height

rotation

zoom

targets --List of targets the camera is focusing on

--Available methods

--For a detailed explanation of their arguments and function, please

refer to the handycam.lua library file
handycam[idx]:transition --Immediately performs a transition

handycam[idx]:queue --Adds a transition to the end of the queue

handycam[idx]:unqueue --Removes a transition from the queue

handycam[idx]:clearQueue --Clears the queue

handycam[idx]:release --Returns camera control to SMBX

handycam[idx]:worldToScreen --Converts coord from world to camera space

handycam[idx]:screenToWorld --Vice-versa

Handycam[idx]:reset --Resets to default behaviour

Handycam[idx]:finish --Finishes all transitions immediately

Handycam[idx]:abort --Aborts all transitions immediately

Handycam[idx]:skip --Finishes active transitions immediately

Particles - Particle Effects and Ribbon Trails
Particles allows you to create and attach particle emitters and ribbons to various objects. Its
usage hasn’t changed much since Beta 3, and the documentation below is still mostly
accurate:
wohlsoft.ru/pgewiki/Particles.lua
However, the overload for Emitter:draw has been extended, with all arguments still being
optional:

Emitter:draw(priority, disableCulling?, renderTarget, sceneCoords?,

color, timeScale, updateWhilePaused?)

http://wohlsoft.ru/pgewiki/Particles.lua

52

Darkness - Darkness and Lighting
While this library is accessible directly from the editor, you can also opt to use it yourself in
order to create more complex effects. It does not require loading, as it is automatically
loaded.

The darkness library allows you to create dark sections. You may have noticed various
light-related configuration flags in the sections of this handbook related to BGO and NPC
configuration. Once a darkness zone exists in the level, those take effect.
To add a darkness zone, you do the following:

local myDarknessField = Darkness.create{args}

--Args allows the following named arguments:
--falloff - Determines how light intensity in this field should propagate. Defaults to

 darkness.falloff.DEFAULT. Paths to shaders can also be supplied.

--shadows - Determines how shadows should be rendered in this field. Defaults to

 darkness.shadow.DEFAULT. Paths to shaders can also be supplied.

--maxLights - Maximum number of lights that can be rendered at any one time. Defaults to 60.

--uniforms - Table of extra uniforms to supply to the shader (can be used to tweak behaviour).

--priorityType - Determines how lights should be selected if there are too many to render. Defaults to

 darkness.priority.DISTANCE.

--bounds - A rect specifying the boundaries of this field. If left nil, will apply to the entire scene.

--boundBlendLength - Size of fadeout on the boundaries of this field, if they are used. Defaults to 64.

--section - Which section this field should apply to. -1 means all sections. Defaults to -1.

--sections ` - Takes precedence over "section". Allows multiple sections to be specified in a table.

--ambient - The ambient light colour. Defaults to 0x0D0D19.

--priority - The render priority of this field. Defaults to 0.

In addition to relying on the lights attached to the player and certain objects by default, you
can create your own lights manually:

--Creates a light

local myLight = Darkness.light(x,y,radius,brightness,color)

--Once you have a light, you have to activate it

Darkness.addLight(myLight)

Darkness.removeLight(myLight) ​--Removal also possible

--If you want a light to only affect specific darkness fields, you can

use the following function

myDarknessField:addLight(myLight)

myDarknessField:removeLight(myLight) ​--Removal also possible

For further functions, please refer to the darkness.lua file directly.

53

Textplus - Advanced Dialogue Framework

local textplus = ​require​(​"textplus"​)

Textplus is a more robust rework of the old textblox library. It’s still WIP, and as such doesn’t
include all of the old library’s features by default. Features such as word bubbles have to
manually be built around at this stage, but textplus’ internal functions provide various
features which neither the vanilla text rendering nor textblox are capable of.
The textplus.lua library contains documentation on its functions.

54

Shader Programming
With this new release we are introducing GLSL shader programming to lunalua. Shaders are
programmed using GLSL Version 1.2, with vertex and fragment parts of a shader split
between .vert and .frag files. In the data_templates directory you are able to find
standard.vert and standard.frag files, which serve as cloneable templates for your own
shader files.
You can then use your own shaders in your lua code like so:

--Initialize the shader

local myShader = Shader()

--Compile the shader

function onStart()

 ​--Vert and Frag default to their standard implementations, so if you

use a standard shader, you can leave that argument as “nil”.

 myShader:compileFromFile(vert, frag)

end

--Shaders can be used with the glDraw drawing function.

function onDraw()

 Graphics.glDraw{

 ...

 shader=myShader,

 ​--texture is parsed as iChannel0,

 uniforms = {

 ​--Define uniforms that are used by the shader

 },

 attributes = {

 ​--Define attributes that are used by the shader (a flattened

 array of data with one object per vertex)

 }

 }

end

glDraw Documentation
The GLSL Documentation contains example shaders to learn from

https://wohlsoft.ru/pgewiki/Graphics.glDraw
http://www.lighthouse3d.com/tutorials/glsl-12-tutorial/

55

Edge Cases and Keeping Compatibility
This build of SMBX2 may be stable, but the engine is being actively developed, so current
problems will be addressed for future releases. As such, certain behaviour is subject to
change in later versions, and while these are unlikely to cause problems for everyday level
design, when delving into complex interactions they may present issues. Below are the most
important points that you need to avoid when designing levels.

Interactions Between Certain New NPCs
We’re still missing some new technology to streamline interactions between NPCs and, as
such, various interactions between new NPCs and other new NPCs can be buggy or cause
other unexpected behaviour. These behaviours are subject to change as soon as we have
the new technology required to do so. Please refrain from exploiting them.

